rate your

Marks)

s in the

Marks)

magh 6% xeandis

reen the Marks)

Fifth Semester B.E. Degree Examination, Dec.08 / Jan.09 Modern Control Theory

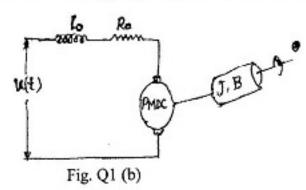
Time: 3 hrs.

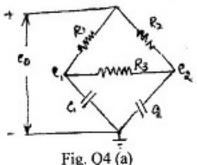
Max. Marks:100

Note: Answer any FIVE full questions.

- a. What is a controller? Discuss the performance features of P, PI and PID controllers used in control system. (10 Marks)
 - b. Figure Q1 (b) shows a position control system with PMDC motor. The motor moment of Inertia is J, kg m², friction coefficient is B, N-m/rad/sec. The motor inductance is L_a and resistance R_a respectively. Model the system in state space choosing appropriate state variables. Use ja(t), ω(t), sθ(t) as state variables with x₁(t), x₂(t), x₃(t) respectively.

(10 Marks)





- 2 a. Obtain the state model in phase variable form, Given $\frac{Y(s)}{R(s)} = \frac{s(s+2)(s+3)}{(s+1)^2(s+4)}$. (06 Marks)
 - b. Obtain the state model in Jordan Canonical form, Given $\frac{Y(s)}{R(s)} = \frac{s(s+2)(s+3)}{(s+1)^2(s+4)}$. (06 Marks)
 - c. For a state model x = Ax, show that $e^{At} = L^{-1}[SI A]^{-1}$ and there by find the solution for a state equation x = Ax + Bu. (08 Marks)
- 3 a. For the state model, $x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$, show that $e^{At} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$, using Cayley Hamilton theorem. (08 Marks)
 - b. Given the state model, $\mathbf{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} \mathbf{u}$, $\mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$, where $\mathbf{u}(t)$ is unit step occurring at t = 0 and $\mathbf{x}^T(0) = \begin{bmatrix} 0 & 1 \end{bmatrix}$. Diagonalize A matrix and thereby find $\mathbf{y}(t)$.

4 a. Circuit in Figure Q4 (a) shows an electrical bridge network. Determine the controllability of the bridge under balanced condition. Condition for balance is R₁C₁ = R₂C₂. (10 Marks)

b. Define observability of a system. Also prove that for a system x = Ax y = Cx to be completely

observable the rank of the matrix CA is n. (10 Marks)

Marks)

Marks)
Marks)

 a. A system has transfer function, 5

$$\frac{Y(s)}{U(s)} = \frac{1}{s(s+1)(s+2)}$$

Determine the feedback matrix such that the closed loop poles are moved to $s = -2 \pm j2\sqrt{3}$ and s = -10. Also write the block diagram of the feedback system. (14 Marks)

- b. What is an observer? Mention the difference between full order observer and reduced order observer. Write the block diagram of full order observer. (06 Marks)
- Obtain the observer gain matrix for the system,

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 0 & -6 \\ 1 & 0 & -11 \\ 0 & 1 & -6 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{u}$$

 $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$, such that the observer closed loop poles are to be located at $-2 \pm j\sqrt{12}$ (10 Marks)

- Explain about saturation, friction, backlash and relay non-linearities occurring in a physical (10 Marks) system.
- a. Draw the phase plane trajectory using isocline method, given x+x+x=0 and (12 Marks) x(0) = 0; x(0) = 6
 - b. What are singular points in a system? Determine the singular points in the system.

i)
$$x+0.5x+2x+x^2=0$$

ii)
$$x+0.5x+2x=0$$
 (08 Marks)

- With reference to a non-linear system, explain jump resonance with a suitable example. (06 Marks)
 - Define i) stability ii) asymptotic stability iii) asymptotic stability in the large. (06 Marks)
 - c. Determine the energy function for the system and check the stability of the system given in (08 Marks) figure Q8 (c). Assume linear spring at origin.

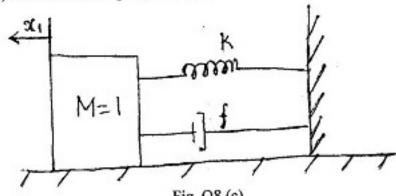


Fig. Q8 (c)